

Validation of a Method for Triphenylmethane Dye Residues in Aquaculture Products by LC-MS/MS

Jürgen Eich, Dagmar Holzkamp and Joachim Mankertz

Introduction

Malachite green (MG) is a triphenylmethane dye, which was successfully used as veterinary drug in aquaculture for the treatment and prevention of different diseases for many years. However, due to their possible carcinogenic, mutagenic and teratogenic effects, the triphenylmethane dyes are not authorised for use in foodproducing animals. In the framework of the German residue control plan, MG, crystal violet (CV) and brilliant green (BG) as well as the metabolites leuco-MG and leuco-CV are analysed routinely. For this purpose a robust and economic method with good performance parameters is required. The presented confirmatory LC-MS/MS-method is able to qualify and quantify 6 TPM substances (Table 1. 3 dyes and their corresponding leuco-forms) with the help of their respective deuterated internal standards with the exception of LBG. Because of the different properties of the dyes and their corresponding leuco-metabolites, an extraction method without clean-up was chosen. The evaporation and reconstitution of the extract solutions could be omitted. The method parameters like the critical concentrations $CC\alpha$ and $CC\beta$, the repeatability, the within-laboratory reproducibility and the recovery are presented.

Experimental

Table 1: Analytes and their corresponding internal standards

Analytes	Abbre viation	Retention time (min)	Internal standards
Malachite green	MG	4.5	Malachite green-D5
Crystal violet	CV	5.1	Crystal violet-D6
Brilliant green	BG	5.7	Brilliant green-D5
Leuco malachite green	LMG	6.4	Leuco malachite green-D5
Leuco crystal violet	LCV	6.5	Leuco crystal violet-D6
Leuco brilliant green	LBG	9.2	Leuco crystal violet-D6

Sample preparation Sample and Spiking

- · weigh in 1 g of sample
- add 500 µl of hydroxylamine solution (20 g l⁻¹)
- add spike solutions for validation
- · wait for 10 min

Extraction

- add 8 ml of acetonitrile containing ascorbic acid (1 %; 100/1, v/v)
- vortex sample for approximately 1 min
- add 1 g of anhydrous magnesium sulfate
- shake vigorously by hand and for 10 min by overhead shaker
- centrifuge for 5 min at 3400 g and 5 °C
- centrifuge a part of the supernatant again for 5 min at 20,000 g

LC-MS/MS

LC-MS/MS-Measurement

LC: Agilent Technologies, 1290 Series, Symmetry C18, Waters (100 mm x 2.0 mm, $3.5 \mu m$) with adequate guard; mobile phase: A = ammonium formate buffer (50 mM, pH 4.5) and B = acetonitrile; gradient program: 0 min = 20 % B, 1 min = 20 % B, 3 min = 90 % B, 10 min = 90 % B, 11 min = 20 % B, 14 min = 20 % B; flow = 0.2 ml/min; oven temperature = 30 °C; injection volume = 10 µl; sampler temperature = 10 °C. Chromatograms of all analytes are shown in Figure 1.

MS/MS: QTRAP 5500 (AB SCIEX), ionisation mode = ESI+; scan type = MRM; dwell time = 100 ms; resolution Q1 and Q3 = unit; gas 1 + 2= 50 psi; curtain gas = 20 psi; ion spray voltage = 5500 V; source = 600 °C.

Validation

In accordance with Commission Decision 2002/657/EC, the validation of the samples was accomplished with concentrations of 0.5, 1.0, 1.5 and 2.0 µg kg⁻¹. The study was designed on the basis of an in-house concept with 8 factor-level combinations (4 factors on two levels, see Table 2). The calculation of the validation experiment data was carried out with the help of the InterVal software (QuoData, Dresden, Germany). The results are shown in Table 3 and Figure 2.

Table 2: Factor-level combinations (runs) with 4 factors

Table 2.1 actor level combinations (rane) with 1 factors								
Run	Species	Storage of extract	Age of column	Operator				
Run 01	trout	24 h	old	Mö				
Run 02	trout	24 h	new	Но				
Run 03	trout	0 h	old	Но				
Run 04	trout	0 h	new	Mö				
Run 05	shrimp	24 h	old	Но				
Run 06	shrimp	24 h	new	Mö				
Run 07	shrimp	0 h	old	Mö				
Run 08	shrimp	0 h	new	Ho				

Results

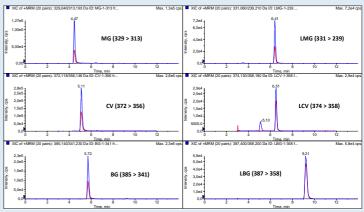


Figure 1: Chromatograms of two transitions of analytes in a trout muscle sample fortified at a level of 1 µg kg-1

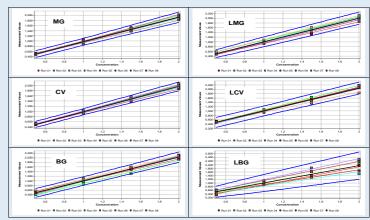


Figure 2: Single curves (runs 1-8), overall curves (black) and prediction intervals (blue) of the measurement values of the analytes MG, CV, BG, LMG, LCV and LBG in the recovery samples of the 8 factor-level combinations of the validation

Table 3: Performance characteristics of the method at a concentration level of 0.75 µg kg-1 by matrix calibration

Analyte	RSD _r * [%]	RSD _{wR} ** [%]	Recovery [%]	CCα [μg kg ⁻¹]	CCβ [μg kg ⁻¹]
MG	5.9	5.9	97.8	0.64	0.73
LMG	7.1	8.3	100.2	0.67	0.80
CV	5.2	5.2	99.0	0.62	0.70
LCV	10.1	10.1	98.7	0.72	0.86
BG	5.4	8.3	97.7	0.70	0.82
LBG	13.8	17.2	102.0	0.83	1.15

^{*} RSD_r: repeatability; ** RSD_{wR}: within-laboratory reproducibility

Conclusions

The verification of different factors was successful regarding the applicability and the ruggedness of the method. Their influence on the validation parameters was not significant. Quantitation was effected on the basis of matrix calibration curves as well as standard calibration. All validation parameters were satisfying and lay in the required ranges with the exception of CC β for LBG. The recommendation for CC α to be less than 1 µg kg-1 (1/2 MRPL for the sum of MG and LMG) was fulfilled. This was true also for the other substances. The method can be applied for muscle of aquaculture (fish and crustaceans) in a concentration range around 1 µg kg-1.